Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yuko Ohuchi, ${ }^{\text {a }}$ Kyoko Noda, ${ }^{\text {a }}$ Takayoshi Suzuki, ${ }^{\text {b }}$ * Kazuo Kashiwabara ${ }^{\text {a }}$ and Hideo D. Takagi ${ }^{\text {a }}$

${ }^{\text {a }}$ Graduate School of Science and Research Centre for Materials Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan, and ${ }^{\mathbf{b}}$ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Correspondence e-mail:
suzuki@chem.sci.osaka-u.ac.jp,
h.d.takagi@nagoya-u.jp

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.058$
$w R$ factor $=0.155$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis(O-ethylxanthato)bis(triphenylphosphine)ruthenium(III) hexafluorophosphate monohydrate

In the monoclinic crystal structure of the title compound, trans- $\left[\mathrm{Ru}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, the structure of the $\mathrm{Ru}^{\mathrm{III}}$ complex cation is very similar to that in the orthorhombic crystal of the nonhydrated complex [Noda, Ohuchi, Hashimoto, Fujiki, Itoh, Iwatsuki, Noda, Suzuki, Kashiwabara \& Takagi (2006), Inorg. Chem. 45, 1349-1355]. In the present crystal structure, the $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ bond axes of the complex cations are aligned parallel to the [101] direction.

Comment

Controlled-potential electrochemical oxidation of cis$\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in acetone in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ afforded the corresponding ruthenium(III) complex, trans$\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (Noda et al., 2006; Bag et al., 1990). Recrystallization of the resulting green product by diffusion of diethyl ether vapour into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution gave two forms of crystals, namely brown plates (minor component), (I), and green plates (major component), (II). We have already determined the structure of (II), which is an orthorhombic nonhydrated complex (Noda et al., 2006). In this paper, we report the structure of (I), which is a monoclinic monohydrate, trans- $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$.

(I)

In compound (I), the structure of the cationic complex (Fig. 1) is very similar to that in (II), except for the orientaion of the Et groups of the $\mathrm{S}_{2} \mathrm{COEt}$ ligands. The $\mathrm{Ru}-\mathrm{P}$ and $\mathrm{Ru}-\mathrm{S}$ bond lengths, and the $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ bond angle (Table 1), compare well with those of (II) (Noda et al., 2006).

The packing of (I) is illustrated in Fig. 2. There is positional disorder of the solvent water molecule. The $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ bond axis of the complex is aligned parallel to the [101] direction. This packing mode is different from that in the green orthorhombic crystal of (II).

Experimental

The preparation and analytical and spectroscopic characterization of the title $\mathrm{Ru}^{\text {III }}$ complex have been described previously by Noda et al. (2006).

Figure 1
A plot of the cationic complex of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

A packing diagram for (I). H atoms and the disordered water molecule have been omitted for clarity.

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \mathrm{PF}_{6} \cdot-$	$V=4626.5(5) \AA^{3}$
$\mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=1030.98$	$D_{x}=1.48 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo Ka radiation
$a=13.9877(9) \AA$	$\mu=0.69 \mathrm{~mm}^{-1}$
$b=16.2122(10) \AA$	$T=200(2) \mathrm{K}$
$c=20.5103(13) \AA$	Platelet, brown
$\beta=95.904(1)^{\circ}$	$0.30 \times 0.22 \times 0.02 \mathrm{~mm}$

Data collection

Rigaku/MSC Mercury CCD area-	45552 measured reflections
detector diffractometer	10523 independent reflections
ω scans	8337 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.045$
$(A B S C O R ;$ Higashi, 1999 $)$	$\theta_{\max }=27.5^{\circ}$
$T_{\min }=0.872, T_{\max }=0.999$	

detector diffractometer
ω scans
(abstion correction: multi-scan
$T_{\text {min }}=0.872, T_{\max }=0.999$
$V=4626.5(5) \AA^{3}$
$Z=4$
1.48 Mg m

Mo $K \alpha$ radiation
$T=200(2) \mathrm{K}$
$0.30 \times 0.22 \times 0.02 \mathrm{~mm}$

45552 measured reflections independent reflections 8337 reflections with $I>2 \sigma(I)$
,
$\theta_{\max }=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0619 P)^{2}\right. \\
& \quad+6.0622 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.156$
$S=1.12$
10523 reflections
541 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Ru} 1-\mathrm{S} 1$	$2.3626(11)$	$\mathrm{Ru} 1-\mathrm{S} 7$	$2.3618(11)$
$\mathrm{Ru} 1-\mathrm{S} 2$	$2.3821(11)$	$\mathrm{Ru} 1-\mathrm{P} 1$	$2.4497(11)$
$\mathrm{Ru} 1-\mathrm{S} 6$	$2.3740(11)$	$\mathrm{Ru} 1-\mathrm{P} 2$	$2.4426(10)$
$\mathrm{S} 1-\mathrm{Ru} 1-\mathrm{S} 2$	$72.96(4)$	$\mathrm{S} 2-\mathrm{Ru} 1-\mathrm{P} 2$	$83.82(4)$
$\mathrm{S} 1-\mathrm{Ru} 1-\mathrm{S} 6$	$177.27(4)$	$\mathrm{S} 6-\mathrm{Ru} 1-\mathrm{S} 7$	$73.10(4)$
$\mathrm{S} 1-\mathrm{Ru} 1-\mathrm{S} 7$	$104.56(4)$	$\mathrm{S} 6-\mathrm{Ru} 1-\mathrm{P} 1$	$92.58(4)$
$\mathrm{S} 1-\mathrm{Ru} 1-\mathrm{P} 1$	$85.89(4)$	$\mathrm{S} 6-\mathrm{Ru} 1-\mathrm{P} 2$	$85.22(4)$
$\mathrm{S} 1-\mathrm{Ru} 1-\mathrm{P} 2$	$96.40(4)$	$\mathrm{S} 7-\mathrm{Ru} 1-\mathrm{P} 1$	$87.52(4)$
$\mathrm{S} 2-\mathrm{Ru} 1-\mathrm{S} 6$	$109.45(4)$	$\mathrm{S} 7-\mathrm{Ru} 1-\mathrm{P} 2$	$93.91(4)$
$\mathrm{S} 2-\mathrm{Ru} 1-\mathrm{S} 7$	$176.37(4)$	$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 2$	$176.90(4)$
$\mathrm{S} 2-\mathrm{Ru} 1-\mathrm{P} 1$	$94.88(4)$		

H atoms bonded to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The solvent water molecule is disordered over two possible sites with occupancies of 50%. The water H atoms were located in difference syntheses and their positional parameters were fixed, with $U_{\text {iso }}(\mathrm{H})=$ $0.091 \AA^{2}$ and $\mathrm{O}-\mathrm{H}$ distances in the range $0.64-0.84 \AA$. The volumes of the asymmetric units of (I) and (II) are 1156.6 (1) and 1107.5 (5) \AA^{3}, respectively. A check with the program PLATON (Spek, 2003) revealed that the crystal structure of (I) contains solvent-accessible voids of $49 \AA^{3}$. However, no other solvent molecule was found in the difference map and the highest peak is located $0.93 \AA$ from atom O51.

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a Grant-in-Aid for Scientific Research (No. 16550055) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bag, N., Lahiri, G. K. \& Chakravorty, A. (1990). J. Chem. Soc. Dalton Trans. pp. 1557-1561.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Noda, K., Ohuchi, Y., Hashimoto, A., Fujiki, M., Itoh, S., Iwatsuki, S., Noda, T., Suzuki, T., Kashiwabara, K. \& Takagi, H. D. (2006). Inorg. Chem. 45, 13491355.

Rigaku (2001). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

